Расчет насоса для системы отопления: мощности, напора, расположения, производительности – формула расчета, давление воды в системе отопления частного дома,клапан подпитки,автоматическая подпитка, как рассчитать насос для отопления,подпиточный клапан,циркуляционный насос,подбор циркуляционного насоса.

Определение мощности двигателя насоса. Формулы для расчета мощности двигателя, напора и производительности насоса. Решенный пример расчета мощности, напора и производительности

Содержание

Основные принципы подбора насосов

Выбор насосного оборудования – ответственный этап, от которого будут зависеть как технологические параметры, так и эксплуатационные качества проектируемой установки. При выборе типа насоса можно выделить три группы критериев:

1) Технологические и конструктивные требования

2) Характер перекачиваемой среды

3) Основные расчетные параметры

Технологические и конструктивные требования:

В некоторых случаях выбор насоса может диктоваться какими-либо строгими требованиями по ряду конструктивных или технологических параметров. Центробежные насосы, в отличие от поршневых, могут обеспечивать равномерную подачу перекачиваемой среды, в то время как для выполнения условий равномерности на поршневом насосе приходится значительно усложнять его конструкцию, располагая на коленчатом вале несколько поршней, совершающих возвратно-поступательные движения с определенным отставанием друг от друга. В то же время подача перекачиваемой среды дискретными порциями заданного объема также может являться технологическим требованием. Примером определяющих конструктивных требований может служить использование погружных насосов в тех случаях, когда необходимо или единственно возможно расположить насос ниже уровня перекачиваемой жидкости.

Технологические и конструктивные требования к насосу редко являются определяющими, а диапазоны подходящих типов насосов для различных специфических случаев применения известны исходя из накопленного человечеством опыта, поэтому в доскональном их перечислении нет необходимости.

Характер перекачиваемой среды:

Характеристики перекачиваемой среды часто становятся определяющим фактором в выборе насосного оборудования. Различные типы насосов подходят для перекачки самых разнообразных сред, отличающихся по вязкости, токсичности, абразивности и множеству других параметров. Так винтовые насосы способны перекачивать вязкие среды с различными включениями, не повреждая структуру среды, и могут с успехом применяться в пищевой промышленности для перекачивания джемов и паст с различными наполнителями. Коррозионные свойства перекачиваемой среды определяют материальное исполнение выбираемого насоса, а токсичность – уровень его герметизации.

Основные расчетные параметры:

Требованиям по эксплуатации, предъявляемы различными отраслями, могут удовлетворять несколько типов насосов. В такой ситуации предпочтение отдается тому типу насосов, который наиболее применим при конкретных значениях основных расчетных параметров (производительность, напор и потребляемая мощность). Ниже приведены таблицы, в общих чертах отражающие границы применения наиболее распространенных типов насосов.

Области применения (подбора) насосов по создаваемому напору

Области применения (подбора) насосов по производительности

Только соответствующий всем трем группам критериев насос может гарантировать длительную и надежную эксплуатацию.

Водопровод

Кроме методики расчета обычным способом приведем и несколько примеров работы с онлайн-калькуляторами.

В начале рассмотрим системы подачи холодной воды, то есть обычный водопровод, затем затронем и горячее водоснабжение (сокращенно ГВС). Причем рассказывать будем не о выборе мощных насосов, которые устанавливаются на станциях водопроводной сети — наша статья о водоснабжении небольших домов и коттеджей.

Если дом подключен к центральному водопроводу, то в большинстве случаев нужное давление создается на станциях водоканала или водонапорными башнями. Поэтому насосы в этом случае, как правило, не нужны. Исключение — дома повышенной этажности, где нормальный напор от водопровода не позволяет подать воду на самые верхние этажи — там ставят повысительные насосы.

Интересный факт. Столбы воды высотой 10 метров создает давление в одну атмосферу (0,1МПа), поэтому разница напора на первом и третьем этажах примерно на эту величину. Если взять к примеру самое высокое здание мира «Бурж Халифа» высотой 828 метров то там для того чтобы вода хотя бы дошла на самый верхний этаж нужен напор около 84т атмосфер. Естественно никакие трубы его не выдержат, поэтому насосы установлены ступенчато через несколько этажей.

Для водоснабжения таких зданий напора создаваемого в водопроводе недостаточно, обязательно нужны повысительные насосы

Для водоснабжения таких зданий напора создаваемого в водопроводе недостаточно, обязательно нужны повысительные насосы

При автономной системе водоснабжения без насосов не обойтись. Как правило, используют либо обычные (поверхностные) либо погружные (глубинные) насосы. Привод их за очень редким исключением электрический.

Выбор зависит от конкретной ситуации или от желания заказчика. Рассмотрим, чем они различаются и наиболее важные характеристики, которые нужны будут нам при проведении расчета.

Обычные насосы

Обычный (поверхностный) насос для водоснабжения

Обычный (поверхностный) насос для водоснабжения

Для подачи воды почти исключительно используются центробежные насосы. В них жидкость захватывается лопастями в центре вращающегося рабочего колеса и отбрасывается за счет центробежной силы на его периметр, где находится напорный патрубок. В центре, где отбирается вода, естественно создается разряжение.

Внимание. При запуске такого мотора без воды (сухой ход), не встретив сопротивления жидкости, колесо, особенно у мощных насосов больших размеров, может раскрутиться очень быстро и сорваться с вала или повредиться другим образом. Поэтому такую ситуацию предупреждают правильным запуском, установкой на входе обратных клапанов (они не дают стечь воде из корпуса) и применением специальной автоматики.

Обычно используются две разновидности насосов — с сальниковым уплотнением приводного вала и более современные с плавающим ротором.

  • У первых вал привода крыльчатки проходит через корпус (улитку) в котором вращается рабочее колесо. Это место уплотняется сальниками или торцовыми уплотнениями. Вал может опираться на собственные подшипники, которые расположены в консоли и соединяться с электромотором через муфту.
  • Еще один вариант такого насоса – моноблок. В нем рабочее колесо насаживается непосредственно на крыльчатку. Первый тип более надежный и простой в обслуживании и ремонте. Второй более компактный.
  • У насосов с плавающим ротором уплотнений в месте прохода вала нет. В нем, как и понятно из названия, ротор электродвигателя находится в корпусе объемно связанным с улиткой. Электромагниты статора создают вращающий момент через стенку, вода охлаждает ротор и смазывает его подшипники.

Такие насосы компактны и надежны. Минусом является сложность ремонта — просто заменить мотор не получиться, нужно полностью разбирать насос.

К тому же стандартные электродвигатели в таком агрегате не применишь. Впрочем, они редко выходят из строя и не нуждаются в обслуживании на протяжении всего срока службы (многие производители это гарантируют).

Характеристики насосов

Теперь перейдем к самому важному.

Тип обычного насоса выбранного для вашей автономной системы водоснабжения влияет на следующее:

  • стоимость монтажа системы автономного водоснабжения;
  • затраты на ее эксплуатацию;
  • периодичность обслуживания;
  • сложность и стоимость монтажа;
  • размеры места установки насоса.

В остальном при расчете нужно ориентироваться на более важные характеристики:

  1. Глубина всасывания: он определяет отметку ниже насоса, с которой он может забрать воду. Определяется обычно в метрах.
  2. Напор: он выражается в давлении насоса на выходе.
  3. Производительность: то, сколько кубометров за час сможет перекачать насос.

Также нужно обращать внимание на такие цифры как энергопотребление (мощность) при равных характеристиках желательно отдавать предпочтение более экономным моделям. Однако цена на них, как правило, более высокая, поэтому желательно просчитывать за какое время более дорогая модель окупит себя (впрочем, это экономический расчет).

Если срок эксплуатации меньше срока окупаемости дорогого насоса, то, скорее всего, не стоит переплачивать, а взять более «прожорливый» к электричеству насос.

Глубинные насосы

Глубинные насосы

Глубинные насосы

Они отличаются от обычных тем, что погружаются в воду, то есть в обсадную трубу скважины, колодец или даже обычный водоем. По конструкции они отличаются от обычных насосов, такими особенностями.

  1. Чаще всего в них не одно рабочее колесо, а несколько, вплоть до десятка, расположенные друг за другом. Всас одного соединяется с выходом следующего (лабиринтная система).
  2. Если обычные насосы чаще всего имеют горизонтальное расположение вала, то глубинные всегда вертикальной компоновки. Это связано с расположением их в ограниченных по диаметру обсадных трубах скважины, которые тоже вертикальны (установка в колодце или водоеме частный случай, на который проектировщики обращают мало внимания).
  3. Электродвигатели тоже особой конструкции. Они не имеют оребрения корпуса, так как охлаждаются водой.

Внимание. Нельзя запускать глубинный насос не погруженным, он не рассчитан на такой режим и может сразу сгореть.

Также моторы этих агрегатов имеют более вытянутые вдоль оси габариты с меньшим диаметром. Это тоже связано с установкой в скважинах.

Кроме центробежных, для небольших систем водоснабжения используют и вибрационные, погружные насосы. Это, к примеру, всем известный «Ручеек» (на фото ниже). По принципу работы он похож на древние поршневые насосы (в том числе и велосипедный), правда ход поршня меньше, частота колебаний больше (поэтому и называют вибрационный), а для привода используется электромагнит.

Несмотря на несколько худшие по сравнению с центробежными глубинными насосами характеристики все, что сказано в нашей статье про них, в полной мере относиться и к «Ручейку» и его аналогам.

Насос типа «Ручеек»

Насос типа «Ручеек»

Характеристики глубинных насосов

Определения характеристик глубинных насосов точно такие же, как и обычных. Разница только в том, что для них не регламентируют всас, так как разрежение на входе не важно, агрегат и так окружен водой.

Зато многие глубинные насосы имеют на порядок больший напор, чем обычные. При установке в глубокой скважине они должны сразу преодолеть напор в длинной подъемной трубе, а затем создать нужное давление в водопроводе.

Также считается, что они несколько более экономичны из-за охлаждения водой. Но это преимущество минимально перед насосами с плавающим ротором. В них тоже применяется подобный принцип, правда статор не имеет контакта с жидкостью со всех сторон. Полное омывание насоса водой дает минимальную экономию в доли процента.

Какой насос выбрать глубинный или поверхностный (обычный)

Довольно сложный вопрос — сравним их достоинства и недостатки.

Обычные насосы

Плюсы:

  • Их проще монтировать на поверхности.
  • Осмотр, обслуживание и ремонт тоже более легкие.
  • Как правило, обычные насосы дешевле.

Минусы:

  • Требуется место или помещение для монтажа.
  • Нужна защита от «сухого хода».
  • По глубине всаса они уступают напору глубинных насосов, поэтому их нельзя использовать для забора воды из глубоких скважин.

Глубинные насосы

Плюсы:

  • Могут работать в глубоких скважинах.
  • Не требуют обустройства мест для монтажа. Вода из подъемной трубы может сразу подаваться в систему водопровода.
  • Если насос погружен ниже минимального уровня воды в скважине, колодце или водоемы он защищен от «сухого хода».

Минусы:

Для извлечения глубинных насосов часто приходиться использовать грузоподъемные механизмы

Для извлечения глубинных насосов часто приходиться использовать грузоподъемные механизмы

  • При установке в глубоких более 10 метров скважинах извлечение насоса вместе с водоподъемной трубой для обследования и ремонта своими руками часто невозможно, нужно использовать грузоподъемные механизмы.
  • Если по каким-то причинам насос был оторван от трубы и страховки (если конечно не забыли про последнюю), достать его довольно сложно.

Интересный факт. Автору данной статьи пришлось извлекать с помощью специальной ловушки нечаянно упущенный насос. После того как он был «спасен» из скважины было вытянуто еще пять большей частью почти полностью разрушенных коррозией таких агрегатов, которые были потеряны предыдущими эксплуататорами за более чем тридцатилетнюю историю инженерного сооружения.

  • Силовой кабель, питающий агрегат, должен быть защищен от воздействия окружающей воды. Нередко его пробой, который возникает из повреждения изоляции, приводит к тому, что приходится извлекать насос, а это, как мы уже говорили выше, затруднительно.

Поэтому дадим один совет, если у вас не очень глубокая скважина или тем более это просто колодец и есть место для монтажа на поверхности, все-таки стоит отдавать предпочтение обычным насосам. Они дешевле и их проще эксплуатировать.

Нередко в качестве плюса обычных насосов перед глубинными ставят еще и тот факт, что глубинный защищен от загрязнений только сеточным фильтром на обсадной трубе, а обычный можно защитить дополнительно многоступенчатыми фильтрами на всасе.

Это неверный факт:

  1. Любая установка для очистки воды стабильно работает только при достаточном давлении, то есть должна монтироваться после насоса.
  2. Насосы для водопровода (неважно глубинный или обыкновенный) рассчитаны на наличие примесей в исходной воде, и они не снижают значительно срок их службы. Конечно, если вы не будете качать смесь песка и воды напрямую — последний эффективно задерживает и сеточный фильтр.

Теперь, разобравшись с выбором насоса по типу, перейдем непосредственно к выбору его по характеристикам.

Немного о единицах измерения давления

В характеристиках насосов для измерения давления могут использоваться не только Паскали

В характеристиках насосов для измерения давления могут использоваться не только Паскали

Привычные атмосферные паскали все хорошо знают из школы, но в характеристиках насоса могут присутствовать и менее известные единицы.

  1. Метр — это метр столба воды. Как уже было сказано выше, он равен одной десятой атмосферы.
  2. Бар — внесистемная единица (но разрешенная к применению в нашей стране) ориентировочно равная одной атмосфере.

Внимание. Также вы можете встретиться с таким непонятным термином как «избыточное давление». Не обращайте внимания, почти все приборы и расчеты на водопроводе под термином «давление» понимают именно его.

Абсолютное давление будет больше на одну атмосферу, то есть, на то давление, которое уже есть на поверхности земли, там, где работают системы водоснабжения. Даже в стакане вода находится под абсолютным давлением в одну атмосферу.

Подбор (расчет) насоса для водопровода по характеристикам

Сразу оговоримся: мы не делаем расчет насосов для водоснабжения по гидравлике, то есть не учитываем сопротивления потоку воды в трубах и на запорных элементах. Для небольших систем водоснабжения частного дома оно мизерно, а вычисления сложные.

Обратите внимание. Некоторые насосы имеют детали, которые изготовлены из материалов, которые по санитарно-гигиеническим нормам недопустимы для использования в сетях водопровода. Поэтому нужно выбирать модели, разрешенные для этих целей.

Для подбора насоса нам нужно сделать несколько шагов, инструкция будет следующей.

Выбираем производительность

Производительность насоса зависит от расхода воды в единицу времени

Производительность насоса зависит от расхода воды в единицу времени

Первое на что нужно ориентироваться — это расход воды на человека в сутки, он составляет 400-500 литров. Если у вас имеется накопительный бак достаточной емкости (подобие водонапорной башни), то можно выполнить следующие шаги.

  1. Умножаем средний расход на количество проживающих в доме (к примеру, средняя семья из четырех человек), плюс одного человека на возможных гостей (если они у вас бывают): 500х5=2500 л.
  2. Делим на количество часов в сутки: 2500_24=104 л/ч, это среднечасовой расход.
  3. Так как желательно чтобы насос не работал постоянно во избежание перегрева и выхода из строя, то дополнительно делим на время его работы. Обычно рекомендуют чтобы время работы не превышало 80%, то есть деление производим на 80_100=0,8, считаем: 104_08=130 л/ч. Эту характеристику берем и для насоса.

Но, как правило, накопительные емкости в системах водоснабжения небольших домов не используют. Наиболее распространенная схема это комбинация насоса и емкости (гидроаккумулятора) небольших размеров, а также систем автоматики. Обычно покупают уже собранный блок этих устройств у продавцов, и в обиходе (что не совсем верно) называют насосными станциями.

В этом случае считать по суточному расходу не совсем верно. Насос работает не постоянно, подпитывая большой накопительный бак (гидроакумулятор можно им не считать из малой емкости), а только во время расхода воды.

Так что, например, если мама решила помыть посуду, папа руки после ремонта машины, один ребенок принять душ, а второй воспользоваться унитазом, и к тому же работает стиральная машина, то разбор воды может оказаться гораздо больше среднесуточного. Поэтому расчет насосной станции водоснабжения и аналогичных им систем следует вести по этим пиковым разборам.

Для этого пересчитываем все имеющиеся водоразборные приборы в доме. Затем берем их часовые расходы. Для этого можно воспользоваться таблицей в приложении 2 к СНиП 2.04.01-85. Она приведена ниже.

Расходы воды и другие характеристики сантехнических приборов

Расходы воды и другие характеристики сантехнических приборов

Далее составляем список всех сантехнических приборов и их часовые расходы. Причем берем не только холодную воду, а суммарный расход, ведь горячая вода это подогретая холодная, которая берется из той же системы водопровода.

Совет. Чтобы не считать вручную, проще воспользоваться Excel, как на таблице ниже.

Наименование прибора Часовой расход воды, л/ч Количество приборов в доме Их суммарный расход
Раковины со смесителем 60 5 300
Мойка 50 1 50
Ванна 300 1 300
Ванна ножная со смесителем 220 1 220
Душ с глубоким поддоном и смесителем 115 2 230
Гигиенический душ (биде) 75 1 75
Унитаз с бачком 83 2 166
Писсуар 36 2 72
 Поливочный кран 1080 1 1080
Итого 2493

В итоге мы получили максимальный расход воды в водопроводе вашего дома — 2493 литра в час. Эта цифра даже немного завышена, так как вряд ли все приборы будут включены одновременно, можно ее снизить на коэффициент 0,9-0,8. Получим: 2493х0,8=1994 л/ч. Правда, если дом маленький и в нем только одна кухня и санузел делать этого не стоит.

Исходя из нашего, получившегося пикового расхода воды в час и будем подбирать в дальнейшем производительность насоса.

Выбираем напор

Для высоких коттеджей нужен и больше напор

Для высоких коттеджей нужен и больше напор

Тут выбор зависит от того глубинный это насос или обычный.

  • Для обычного насоса все максимально просто: согласно стандартам давление в водопроводе должно быть в пределах 0,05-0,5 мПа, то есть от половины до пяти атмосфер. Как показывает практика для нормальной работы стиральных, посудомоечных машин и прочей бытовой техники желательно, чтобы давление не было менее 1 атмосферы, т. е. 0,1 МПа, поэтому будем выбирать насос именно с таким давлением.

Если у вас коттедж более трех этажей (что бывает редко) то нужно позаботиться о том, чтобы и вверху был нормальный напор. При стандартной высоте потолка около 3 метров на четвертом этаже давления не будет, поэтому добавляем 0,1 МПа.

То есть в большинстве случаев при подборе насоса для водоснабжения достаточно напора в 1-1,5 атмосферы (0,1-0,15 Мпа).

  • При выборе варианта с установленным в скважине агрегатом, расчет насоса водоснабжения на напор усложняется, но не сильно — просто нужно учитывать отметку его погружения. То есть если вода забирается с глубины 15 метров, к напору, рассчитанному, так же как и в предыдущем случае, добавляем 1,5 атмосферы (15:10=1,5) или 0,15 МПа (15:100=0,15). Считаем: 0,15+0,1=0,25Мпа, на эту цифру и будем ориентироваться при выборе конкретной модели насоса.

Глубина всасывания (всас)

Чем глубже скважина, тем больше должен быть всас насоса

Чем глубже скважина, тем больше должен быть всас насоса

Самый легко подбираемый параметр. Для глубинных насосов он не нужен и не описывается в характеристиках вообще, так как вода забирается с уровня, на котором расположен насос.

В случае же обычного поверхностного насоса необходимо, чтобы эта характеристика была немного больше разницы отметок заборника и места расположения насоса. Запас нужен для непредвиденных ситуаций, например, во время засухи уровень снизиться и заборник придется опускать ниже.

Подбирается просто, например насос находится на уровне земли, а вода забирается с глубины 10 метров. Значит, всас должен быть более 10 метров.

Многократный запас давать не стоит, если заборник расположен на глубине 1-го метра, то не стоит брать насос с глубиной всасывания 15, достаточно 3-5. Это связано с тем, что чем больше эта характеристика, тем сложнее и дороже насос.

Непосредственно выбор

Когда известны все параметры, можно выбирать насос или станцию из прайс-листов и справочников. Даже не обязательно самостоятельно подбирать модель. Почти на всех сайтах продавцов есть фильтры, в которые мы вводим нужные характеристики, затем на экран выводится список наиболее подходящих моделей.

Например, для выбора на сайте компании «Грандфос» достаточно сделать несколько шагов. Нам нужен поверхностный насос с производительностью 1,5 литров в минуту с высотой подъема (всасом) 5 метров и напором в 1,5 атмосферы (15 метров). Делаем следующее.

  • На вкладке вверху нажимаем на закладку «поверхностный насос».
Выбор типа насоса

Выбор типа насоса

  • Затем можно на фильтре справа на странице вводим необходимые параметры. Дополнительно можно выбрать ценовой диапазон, бренд, мощность, тип привода (электромотор, двигатель внутреннего сгорания) и т.д. Если проводился расчет станции водоснабжения, то можно найти и ее.
Ввод параметров насоса

Ввод параметров насоса

  • После этого жмем ввод, и на нашей странице отображаются агрегаты соответствующие заданным характеристикам.
Насосы, отобранные согласно заданным параметрам

Насосы, отобранные согласно заданным параметрам

  • Дополнительно можно выбрать в каком порядке насосы будут отображаться на странице. То есть возможны варианты по возрастанию или убыванию цены, популярности или сразу более новые или старые модели и наоборот. Для этого нажимаем на кнопки вверху страницы.
Выбор порядка отображения моделей на странице (сортировки)

Выбор порядка отображения моделей на странице (сортировки)

Вступление

В прошлой статье серии «Водоснабжение дома своими руками», мы выбирали скважинный насос исходя из общих технических характеристик насосов имеющихся в продаже. Охватить все продающиеся насосы невозможно, но представление, какие бывают насосы, мы получили.

В этой статье, пойдем другим путем. Произведем расчет технических характеристик скважинного насоса исходя их своих потребностей в воде, а также имеющейся скважины.

Давление

Давление (p) выражает силу, действующую на единицу площади, и делится на статическое и динамическое давление. Сумма этих двух давлений представляет собой полное давление.

Измерение статического давления производится с помощью манометра, исключительно при неподвижной жидкости или с помощью отвода давления, установленного перпендикулярно направлению потока, см. рисунок 2.3.

Для измерения полного давления приемное отверстие отвода давления следует расположить навстречу направлению потока, см. рисунок 2.3. Динамическое давление определяется как разность между полным и статическим давлением. Такое измерение может быть выполнено с помощью трубки Пито.

Динамическое давление зависит от скорости жидкости, Динамическое давление может быть рассчитано по следующей формуле, в которой скорость (V) получена с помощью измерения, а плотность (ρ) жидкости известна:

Динамическое давление может быть преобразовано в статическое, и наоборот. При течении в расширяющейся трубе происходит преобразование динамического давления в статическое, см. рисунок 2.4. Течение в трубе называется потоком в трубе, а участок трубы, в котором диаметр трубы увеличивается, называется диффузором.

Пример преобразования динамического давления в статическое давление в диффузоре

Для чего необходимы расчеты

Большинство современных систем автономного обогрева, использующихся для поддержания определенной температуры в жилых помещениях, укомплектованы насосами центробежного типа, которые обеспечивают бесперебойную циркуляцию жидкости в отопительном контуре.

За счет увеличения давления в системе можно снизить температуру воды на выходе отопительного котла, сократив тем самым суточный расход потребляемого им газа.

Правильный выбор модели циркуляционного насоса, позволяет на порядок повысить уровень эффективности работы оборудования в отопительный сезон и обеспечить комфортную температуру в помещениях любой площади.

Подбор циркуляционного насоса для системы отопления

1 Исходные данные для расчёта рабочего колеса.

Рабочее
колесо является наиболее важным элементом
центробежного насоса. Если возникает
необходимость аналитического расчёта
насоса, как в нашем случае, то расчёт
ведётся с учётом геометрии ранее
спроектированных насосов с высокими
энергетическими показателями.

Для
расчёта рабочего колеса необходимо
знать подачу Q,
напор Н, частоту вращения n.
При проектировании пожарного насоса n
принимают равной 2900 об/мин, что обеспечивает
рациональную конструкцию колеса,
развивающего достаточно высокий напор.
При этом ограничения по частоте вращения,
связанные с опасностью кавитации,
отсутствуют, т. к. пожарные насосы на
судах работают с подпором.

Для
оценки максимально допустимой с точки
зрения кавитации частоты вращения
рабочего колеса осушительного и
балластного насоса используется
кавитационный коэффициент быстроходности
с,
предложенный С. С. Рудневым:

где:
n
— частота вращение вала насоса, об/мин;

Q
— подача насоса, м3/с;

hкр
— критический кавитационный запас в
метрах, который можно определить по
формуле:

где:
РA
— атмосферное давление, Па;

Рn
— давление насыщенных паров воды,
зависящее от температуры (табл. 5), Па;

HВД
— максимально допустимая высота всасывания
в метрах, определяемая по результатам
гидравлического расчёта сопротивления
приёмного трубопровода осушительной
или балластной системы;

Vвход
— скорость жидкости на входе в насос,
равная скорости в приёмном трубопроводе,
м/с;

с
— кавитационный коэффициент быстроходности,
который лежит в пределах:


для пожарных насосов 700÷800;


для осушительных и балластных 800÷1000.

По
известным величинам Q,
c,
hкр
определяется максимально допустимая
частота вращения вала насоса nmax:

Давление
насыщенных паров Таблица 5

t,
о
С

5

10

20

30

40

50

60

70

Рn/g
, кПа

0,6

0,9

1,2

2,3

4,2

7,4

12,3

19,9

31,2

Значение
nmaxможет
быть использовано для расчёта рабочего
колеса насоса, если между двигателем и
насосом используется промежуточная
передача (редуктор, ременная или т.п.),
позволяющая набрать необходимое
передаточное число i.

Однако,
в большинстве случаев на судах используется
непосредственный привод насоса от
асинхронного двигателя, имеющего частоту
1450 или 2900 об/мин.

Отсюда,
если nmax
> 2900 об/мин, то выбирается n
= 2900 об/мин, что позволяет существенно
сократить габариты проектируемого
насоса. Если nmaxmax.

Напор

На следующих страницах представлены различные характеристики.

Кривая QH показывает напор (H) как функцию подачи (Q). Подача (Q) — это объем жидкости, проходящей через насос на единицу времени. Подача обычно выражается в кубических метрах в час (м3/ч), но в формулах используются кубические метры в секунду (м3/с). Типичная кривая QH показана на рисунке 2.5.

Построение кривой QH для заданного насоса производится с помощью установки, показанной на рисунке 2.6.

Насос запускается и работает с постоянной частотой вращения. При полном закрытии арматуры Q равно нулю, а H достигает максимального значения. При постепенном открытии арматуры Q увеличивается, а H уменьшается. H — это высота столба жидкости в открытой трубе за насосом. Кривая QH представляет собой последовательность точек, соответствующих парам значений Q и H, см. рисунок 2.5.

В большинстве случаев измеряется давление насоса Dpполн, а напор H рассчитывается по следующей формуле:

Кривая QH будет точно такой же, если опыт, изображенный на рисунке 2.6, провести с жидкостью, плотность которой отличается от плотности воды. Таким образом, кривая QH не зависит от перекачиваемой жидкости. Это можно объяснить с помощью теории, где доказано, что Q и H зависят от геометрии насоса и скорости вращения рабочего колеса, но не от плотности перекачиваемой жидкости.

Повышение давления в насосе можно измерить в метрах водяного столба (м вод. ст.). Метр водяного столба — это единица давления, которую нельзя путать с напором, выраженным в метрах. Как видно из таблицы физических свойств воды, при повышении температуры плотность воды существенно изменяется. Таким образом, необходимо выполнять преобразование давления в напор.

Типичная кривая QH центробежного насоса: при малой подаче напор высокий, при большой подаче напор низкий

2. Измерьте высоту, на которую необходимо перекачивать воду.

Это расстояние по вертикали от верхнего уровня грунтовых вод (или верхнего уровня воды в первом резервуаре) до уровня конечного пункта назначения воды. Не принимайте во внимание расстояние по горизонтали, на которое необходимо перекачивать воду. Если уровень воды изменяется со временем, используйте максимально предолагаемое расстояние. Это «высота подачи воды» (напор), который должен будет создать ваш насос.

Пример: Когда садовый резервуар почти пуст (самый низкий предолагаемый уровень), его уровень воды на 50 футов ниже поверхности сада, который нуждается в поливе

Расчет мощности водяного насоса

Расчет производительности для различных насосов

Все многообразие типов насосов можно разделить на две основные группы, расчет производительности которых имеет принципиальные отличия. По принципу действия насосы подразделяют на динамические и объемные. В первом случае перекачка среды происходит за счет воздействия на нее динамических сил, а во втором случае – за счет изменения объема рабочей камеры насоса.

К динамическим насосам относятся:

1) Насосы трения (вихревые, шнековые, дисковые, струйные и т.д.)
2) Лопастные (осевые, центробежные)
3) Электромагнитные

К объемным насосам относятся:
1) Возвратно-поступательные (поршневые и плунжерные, диафрагменные)
2) Роторные
3) Крыльчатые

Ниже будут приведены формулы расчета производительности для наиболее часто встречающихся типов.

Поршневые насосы (объемные насосы)

Основным рабочим элементом поршневого насоса является цилиндр, в котором двигается поршень. Поршень совершает возвратно-поступательные движения за счет кривошипно-шатунного механизма, чем обеспечивается последовательное изменение объема рабочей камеры. За один полный оборот кривошипа из крайнего положения поршень совершает полный ход вперед (нагнетание) и назад (всасывание). При нагнетании в цилиндре поршнем создается избыточное давление, под действием которого всасывающий клапан закрывается, а нагнетательный клапан открывается, и перекачиваемая жидкость подается в нагнетательный трубопровод. При всасывании происходит обратный процесс, при котором в цилиндре создается разряжение за счет движения поршня назад, нагнетательный клапан закрывается, предотвращая обратный ток перекачиваемой среды, а всасывающий клапан открывается и через него происходит заполнение цилиндра. Реальная производительность поршневых насосов несколько отличается от теоретической, что связано с рядом факторов, таких как утечки жидкости, дегазация растворенных в перекачиваемой жидкости газов, запаздывание открытия и закрытия клапанов и т.д.

Для поршневого насоса простого действия формула расхода будет выглядеть следующим образом:

Q = F·S·n·ηV

Q – расход (м3/с)
F – площадь поперечного сечения поршня, м2
S – длина хода поршня, м
n – частота вращения вала, сек-1
ηV – объемный коэффициент полезного действия

Для поршневого насоса двойного действия формула расчета производительности будет несколько отличаться, что связано наличием штока поршня, уменьшающего объем одной из рабочих камер цилиндра.

Q = F·S·n + (F-f)·S·n = (2F-f)·S·n

Q – расход, м3/с
F – площадь поперечного сечения поршня, м2
f – площадь поперечного сечения штока, м2
S – длина хода поршня, м
n – частота вращения вала, сек-1
ηV – объемный коэффициент полезного действия

Если пренебречь объемом штока, то общая формула производительности поршневого насоса будет выглядеть следующим образом:

Q = N·F·S·n·ηV

Где N – число действий, совершаемых насосом за один оборот вала.

Шестеренчатые насосы (объемные насосы)

В случае шестеренчатых насосов роль рабочей камеры выполняет пространство, ограничиваемое двумя соседними зубьями шестерней. Две шестерни с внешним или внутренним зацеплением размещаются в корпусе. Всасывание перекачиваемой среды в насос происходит за счет разряжения, создаваемого между зубьями шестерен, выходящими из зацепления. Жидкость переносится зубьями в корпусе насоса, и затем выдавливается в нагнетательный патрубок в момент, когда зубья вновь входят в зацепление. Для протока перекачиваемой среды в шестеренных насосах предусмотрены торцевые и радиальные зазоры между корпусом и шестернями.

Производительность шестеренного насоса может быть рассчитана следующим образом:

Q = 2·f·z·n·b·ηV

Q – производительность шестеренчатого насоса, м3/с
f – площадь поперечного сечения пространства между соседними зубьями шестерни, м2
z – число зубьев шестерни
b – длинна зуба шестерни, м
n – частота вращения зубьев, сек-1
ηV – объемный коэффициент полезного действия

Существует также альтернативная формула расчета производительности шестеренного насоса:

Q = 2·π·DН·m·b·n·ηV

Q – производительность шестеренчатого насоса, м3/с
DН – начальный диаметр шестерни, м
m – модуль шестерни, м
b – ширина шестерни, м
n – частота вращения шестерни, сек-1
ηV – объемный коэффициент полезного действия

Винтовые насосы (объемные насосы)

В насосах данного типа перекачивание среды обеспечивается за счет работы винта (одновинтовой насос) или нескольких винтов, находящихся в зацеплении, если речь идет о многовинтовых насосах. Профиль винтов подбирается таким образом, чтобы область нагнетания насоса была изолирована от области всасывания. Винты располагаются в корпусе таким образом, чтобы при их работе образовывались заполненные перекачиваемой средой области замкнутого пространства, ограниченные профилем винтов и корпусом и движущиеся по направлению в области нагнетания.

Производительность одновинтового насоса может быть рассчитана следующим образом:

Q = 4·e·D·T·n·ηV

Q – производительность винтового насоса, м3/с
e – эксцентриситет, м
D – диаметр винта ротора, м
Т – шаг винтовой поверхности статора, м
n – частота вращения ротора, сек-1
ηV – объемный коэффициент полезного действия

Центробежные насосы

Центробежные насосы являются одним из наиболее многочисленных представителей динамических насосов и широко распространены. Рабочим органом в центробежных насосах является насаженное на вал колесо, имеющее лопасти, заключенные между дисками, и расположенное внутри спиралевидного корпуса.

За счет вращения колеса создается центробежная сила, воздействующая на массу перекачиваемой среды, находящейся внутри колеса, и передает ей часть кинетической энергии, которая затем переходит в потенциальную энергию напора. Создаваемое при этом в колесе разрежение обеспечивает непрерывную подачу перекачиваемой среды их всасывающего патрубка. Важно отметить, что перед началом эксплуатации центробежный насос должен быть предварительно заполнен перекачиваемой средой, так как в противном случае всасывающей силы будет недостаточно для нормальной работы насоса.

Центробежный насос может иметь не один рабочий орган, а несколько. В таком случае насос называется многоступенчатым. Конструктивно он отличается тем, что на его валу расположено сразу несколько рабочих колес, и жидкость последовательно проходит через каждое из них. Многоступенчатый насос при той же производительности будет создавать больший напор в сравнении с аналогичным ему одноступенчатым насосом.

Производительность центробежного насоса может быть рассчитана следующим образом:

Q = b1·(π·D1-δ·Z)·c1 = b2·(π·D2-δ·Z)·c2

Q – производительность центробежного насоса, м3/с
b1,2 – ширины прохода колеса на диаметрах D1 и D2, ­м
D1,2 – внешний диаметр входного отверстия (1) и внешний диаметр колеса (2), м
δ – толщина лопаток, м
Z – число лопаток
C1,2 – радиальные составляющие абсолютных скоростей на входе в колесо (1) и выходе из него (2), м/с

Как было отмечено выше, напор не является геометрической характеристикой и не может отождествляться с высотой, на которую необходимо поднять перекачиваемую жидкость. Необходимое значение напора складывается из нескольких слагаемых, каждое из которых имеет свой физический смысл.

Общая формула расчета напора (диаметры всасывающего и нагнетающего патрубком приняты одинаковыми):

H = (p2-p1)/(ρ·g) + Hг + hп

H – напор, м
p1 – давление в заборной емкости, Па
p2 – давление в приемной емкости, Па
ρ – плотность перекачиваемой среды, кг/м3
g – ускорение свободного падения, м/с2
Hг – геометрическая высота подъема перекачиваемой среды, м
hп – суммарные потери напора, м

Первое из слагаемых формулы расчета напора представляет собой перепад давлений, который должен быть преодолен в процессе перекачивания жидкости. Возможны случаи, когда давления p1 и p2 совпадают, при этом создаваемый насосом напор будет уходить на поднятие жидкости на определенную высоту и преодоление сопротивления.

Второе слагаемое отражает геометрическую высоту, на которую необходимо поднять перекачиваемую жидкость. Важно отметить, что при определении этой величины не учитывается геометрия напорного трубопровода, который может иметь несколько подъемов и спусков.

Третье слагаемое характеризует снижение создаваемого напора, зависящее от характеристик трубопровода, по которому перекачивается среда. Реальные трубопроводы неизбежно будут оказывать сопротивление току жидкости, на преодоление которого необходимо иметь запас величины напора. Общее сопротивление складывается из потерь на трение в трубопроводе и потерь в местных сопротивлениях, таких как повороты и отводы трубы, вентили, расширения и сужения прохода и т.д. Суммарные потери напора в трубопроводе рассчитываются по формуле:

Hоб – суммарные потери напора, складывающиеся из потерь на трение в трубах Hт и потерь в местных сопротивлениях Нмс

Hоб = HТ + HМС = (λ·l)/dэ·[w2/(2·g)] + ∑ζМС·[w2/(2·g)] = ((λ·l)/dэ + ∑ζМС)·[w2/(2·g)]

λ – коэффициент трения
l – длинна трубопровода, м
dЭ – эквивалентный диаметр трубопровода, м
w – скорость потока, м/с
g – ускорение свободного падения, м/с2
w2/(2·g) – скоростной напор, м
∑ζМС – сумма всех коэффициентов местных сопротивлений

Устройство циркуляционного насоса

Циркулярная помпа необходима для циркуляции воды и поддерживания натиска в магистрали поставки воды. Если данный прибор установлен в обогревательной системе – температура тепла по трубам будет располагаться равномерным образом. Устройство предотвращает сбои в системе поставки воды и позволяет уменьшить расход электроэнергии.

Циркуляционная помпаЦиркуляционная помпаИсточник https://cdnmedia.220-volt.ru

Устройство циркуляционного насоса:

  • металлический корпус;
  • ротор;
  • крыльчатка.
Подробное устройство циркуляционного аппаратаПодробное устройство циркуляционного аппаратаИсточник https://avatars.mds.yandex.net

Для чего нужен циркуляционный насос

Данные устройства используются в таких сферах, как:

  • система отопления;
  • подача горячей воды;
  • «теплый пол»;
  • вентиляционная система;
  • канализация.

Более подробную информацию о циркуляционных насосах смотрите в ролике:

3. Оцените потери от трения в трубе.

Помимо минимального давления, необходимого для перекачивания воды на определенное расстояние, вашему насосу также необходимо преодолеть силу трения, создаваемую при перемещении воды по трубам. Общая сила трения зависит от материала, использованного при производстве труб, внутреннего диаметра и длины трубы, а также от наличия изгибов и способа монтажа. Посмотрите на значения потерь от трения в трубах, в таблицах в приложении. Запишите суммарную потерю трения в футах (это означает количество футов, которое вы «теряете» в высоте подачи воды насосом из-за трения)

* Справка: 1’’ (inch) = 1 дюйм = 2,54 см

Пример: Садовник решает использовать пластиковые трубы диаметром 1 дюйм и нуждается в трубе общей длиной 75 футов (включая длину по горизонтали ). Согласно таблице, на трение в трубах при использовании пластиковых труб диаметром 1 ” происходит потеря 6,3 футов напора воды на каждые 100 футов общей длины трубы.

75фт ∗ 6,3 фт напора / 100 фт = 4,7 фт напора

Примем во внимание также потерю от трения в каждом монтажном соединении трубы. Для пластиковой трубы диаметром 1 “, одним 90º коленным разъемом и тремя резьбовыми соединениями потеря соответствует 15 футам.

Суммируя все потери вместе получим общую потерю от трения, которая составит:

4,7 + 15 = 19,7 фута или около 20 футов.

Эти диаграммы часто включают в себя оценку скорости воды, также основанную на её расходе и типе используемых труб. Лучше всего поддерживать скорость ниже 5 футов / с, чтобы предотвратить «гидравлический молот», повторяющуюся стучащую вибрацию, которая может повредить ваше оборудование.

Расчет мощности водяного насоса

Тонкости выбора

Итак, если вы столкнулись с выбором насоса, как погружного, так и циркуляционного, впервые, настоятельно рекомендуем воспользоваться всеми советами и рекомендациями. Прежде всего, доверяйте только проверенным производителям, качество продукции которых не вызывает ни малейших нареканий. Не стоит пренебрегать помощью профессионалов: они из всего представленного многообразия помогут выбрать оптимальный вариант, отталкиваясь от основных требований особенностей эксплуатации.

Расчет потребляемой мощности насоса

Выделяют несколько мощностей в зависимости от потерь при ее передаче, которые учитываются различными коэффициентами полезного действия. Мощность, идущая непосредственно на передачу энергии перекачиваемой жидкости, рассчитывается по формуле:

NП = ρ·g·Q·H

NП – полезная мощность, Вт
ρ – плотность перекачиваемой среды, кг/м3
g – ускорение свободного падения, м/с2
Q – расход, м3/с
H – общий напор, м

Мощность, развиваемая на валу насоса, больше полезной, и ее избыток идет на компенсацию потерь мощности в насосе. Взаимосвязь между полезной мощностью и мощностью на валу устанавливается коэффициентом полезного действия насоса. КПД насоса учитывает утечки через уплотнения и зазоры (объемный КПД), потери напора при движении перекачиваемой среды внутри насоса (гидравлический КПД) и потери на трение между подвижными частями насоса, такими как подшипники и сальники (механический КПД).

NВ = NП/ηН

NВ – мощность на валу насоса, Вт
NП – полезная мощность, Вт
ηН – коэффициент полезного действия насоса

В свою очередь мощность, развиваемая двигателем, превышает мощность на валу, что необходимо для компенсации потерь энергии при ее передаче от двигателя к насосу. Мощность электродвигателя и мощность на валу связаны коэффициентами полезного действия передачи и двигателя.

NД = NВ/(ηП·ηД)

NД – потребляемая мощность двигателя, Вт
NВ – мощность на валу, Вт
ηП – коэффициент полезного действия передачи
ηН – коэффициент полезного действия двигателя

Окончательная установочная мощность двигателя высчитывается из мощности двигателя с учетом возможной перегрузки в момент запуска.

NУ = β·NД

NУ – установочная мощность двигателя, Вт
NД – потребляемая мощность двигателя, Вт
β – коэффициент запаса мощности

Коэффициент запаса мощности может быть приближенно выбран из таблицы:

Виды по типу размещения

Обзор основных видов насосов для обустройства водоснабжения в доме
По способу размещения водоснабжающие гидронасосы подразделяются на два класса:

  1. Поверхностного типа. Располагаясь в стороне от источника воды, обеспечивают ее всасывание по опущенной в колодец или скважину трубе.
  2. Погружные. Полностью опускаются в воду на некоторую глубину.

Иногда в отдельный класс выделяют насосные станции, которые по сути являются компактным самодостаточным водонапорным комплексом, состоящим из поверхностного насоса, накопительного мембранного бака‑гидроаккумулятора, реле давления воды и схемы управления.

Полезные рекомендации

При выборе насоса для системы отопления преимущество стоит отдавать конструкциям с «мокрым» ротором, поскольку они очень тихо работают и выдерживают более высокие нагрузки, чем гидравлические приспособления иных модификаций.

Корме того, обратите внимание на материал корпуса – остановите свой выбор на изделиях из нержавеющей стали, бронзы или латуни. Так же предпочтение стоит отдавать моделям с подшипниками и валом, изготовленными из керамики. Срок эксплуатации такого оборудования превышает 20 лет.

При установке устройства в систему необходимо проследить, чтобы вал крыльчатки располагался горизонтально, то есть параллельно трубе. Если в процессе работы насоса появляется подозрительный шум, это еще не говорит о его неисправности или фабричном дефекте. Попробуйте спустить воздух, оставшийся в системе после запуска.

Рабочая точка

Рабочая точка – это точка пересече­ния графика характеристики насоса с графиком характеристики гидроси­стемы. Понятно, что любые изменения в гидросистеме, например измене­ние проходного сечения клапана при его открытии или образование отложений в трубопроводе, сказы­ваются на характеристики гидроси­стемы, в результате чего положение рабочей точки изменяется. Анало­гичным образом изменения в насо­се, например износ рабочего колеса или изменении частоты вращения, вызовут возникновение новой рабо­чей точки.

Рис. 13 Рабочая точка

12 Испытание поршневого насоса

Испытание насоса
производится с целью определения затрат
мощности в отдельных частях насоса.

При испытании
снимаются индикаторная диаграмма,
показания мановакуумметра на всасывании
и манометра на нагнетании, расходомера
и по электроприборам фиксируется
мощность, потребляемая двигателем.

Наибольший интерес
представляет индикаторная диаграмма,
по которой можно выявить неисправности,
возникающие в гидравлической части
насоса.

Для слияния диаграмм
можно воспользоваться механическим
индикатором давления.

Как рассчитать мощность насоса

Рисунок
5.26

На рисунке 5.26
представлена принципиальная схема
механического индикатора, установленного
на цилиндре насоса. Индикатор состоит
из барабана 1, на который надевается
бумага, и гидроцилиндра 2, присоединяемого
к цилиндру насоса 4 через кран 3. При
открытии крана давление из полости
цилиндра насоса передается в гидроцилиндр
индикатора, вызывая перемещение поршня
последнего. Поршень индикатора на своем
штоке имеет тарированную на определенное
давление пружину 5 с рычагом, на конце
которой крепится карандаш 6. Барабан
тягой 7 соединен с одной из деталей
насоса, движущейся возвратно-поступательно
(шток 8), что приводит к возвратно-поступательному
движению барабана, соответствующему
ходу поршня.

На
бумаге барабана прочерчиваются линии,
равные или пропорциональные длине хода
поршня при атмосферном давлении Р
при открытом ранее З΄ и закрытом кране
З и линии давления за два хода поршня
РВ
и РН
при открытом кране З и закрытом кране
З΄. Полученная таким путем индикаторная
диаграмма имеет вид (рисунок 5.27),
где рв, рн, рi
— давления всасывания, нагнетания и
индикаторное; fD
— площадь диаграммы;
l
длина диаграммы, равная или пропорциональная
длине хода поршня S.

Как рассчитать мощность насоса

Рисунок
5.27

Чтобы
определить среднеиндикаторное давление
по диаграмме, надо знать постоянную
пружины индикатора — масштаб диаграммы
пo
высоте т (мм=1кгс/см2).

Как рассчитать мощность насоса.

На индикаторной
диаграмме, полученной при испытании
насоса в начале всасывания и нагнетания,
фиксируется и т.п. неоднократные колебания
клапанов, что вызывается изменением их
гидравлического сопротивления при
подъеме с седла и последующим свободным
движением; при значительных давлениях
линии подъема и падения давления не
строго вертикальны из-за сжимаемости
жидкости и выделения из нее пузырьков
газа.

По виду индикаторной
диаграммы можно установить различные
неисправности в работе насоса. На рисунке
5.28 показаны диаграммы при работе насоса
с различными неисправностями: 1 — насос
вместе с жидкостью всасывает воздух,
который сжимает по линии “a”
в начале процесса нагнетания; 2 — в
цилиндре имеется воздушный мешок,
который сжимается по линии- “a”
в начале процесса нагнетания и расширяется
по линии “в” в начале процесса всасывания;
3 – пропускает всасывающий клапан; 4 –
пропускает нагнетательный клапан; 5 –
недостаточный (отсутствует) объем
воздушной подушки пневмокомпенсаторов.

Как рассчитать мощность насоса

Рисунок 5.28

Примеры задач по расчету и подбору насосов с решениями

Пример №1

Плунжерный насос одинарного действия обеспечивает расход перекачиваемой среды 1 м3/ч. Диаметр плунжера составляет 10 см, а длинна хода – 24 см. Частота вращения рабочего вала составляет 40 об/мин.

Требуется найти объемный коэффициент полезного действия насоса.

Решение:

Площадь поперечного сечения плунжера :

F = (π·d²)/4 = (3,14·0,1²)/4 = 0,00785 м²2

Выразим коэффициент полезного действия из формулы расхода плунжерного насоса:

ηV = Q/(F·S·n) = 1/(0,00785·0,24·40) · 60/3600 = 0,88

Пример №2

Двухпоршневой насос двойного действия создает напор 160 м при перекачивании масла с плотностью 920 кг/м3. Диаметр поршня составляет 8 см, диаметр штока – 1 см, а длинна хода поршня равна 16 см. Частота вращения рабочего вала составляет 85 об/мин. Необходимо рассчитать необходимую мощность электродвигателя (КПД насоса и электродвигателя принять 0,95, а установочный коэффициент 1,1).

Решение:

Площади попреречного сечения поршня и штока:

F = (3,14·0,08²)/4 = 0,005024 м²

F = (3,14·0,01²)/4 = 0,0000785 м²

Производительность насоса находится по формуле:

Q = N·(2F-f)·S·n = 2·(2·0,005024-0,0000785)·0,16·85/60 = 0,0045195 м³/час

Далее находим полезную мощность насоса:

NП = 920·9,81·0,0045195·160 = 6526,3 Вт

С учетом КПД и установочного коэффициента получаем итоговую установочную мощность:

NУСТ = 6526,3/(0,95·0,95)·1,1 = 7954,5 Вт = 7,95 кВт

Пример №3

Трехпоршневой насос перекачивет жидкость с плотностью 1080 кг/м3 из открытой емкости в сосуд под давлением 1,6 бара с расходом 2,2 м3/час. Геометрическая высота подъема жидкости составляет 3,2 метра. Полезная мощность, расходуемая на перекачивание жидкости, составляет 4 кВт. Необходимо найти величину потери напора.

Решение:

Найдем создаваемый насосом напор из формулы полезной мощности:

H = NП/(ρ·g·Q) = 4000/(1080·9,81·2,2)·3600 = 617,8 м

Подставим найденное значение напора в формулу напора, выраженую через разность давлений, и найдем искомую величину:

hп = H – (p2-p1)/(ρ·g) – Hг = 617,8 – ((1,6-1)·105)/(1080·9,81) – 3,2 = 69,6 м

Пример №4

Реальная производительность винтового насоса составляет 1,6 м3/час. Геометрические характеристики насоса: эксцентриситет – 2 см; диаметр ротора – 7 см; шаг винтовой поверхности ротора – 14 см. Частота вращения ротора составляет 15 об/мин. Необходимо определить объемный коэффициент полезного действия насоса.

Решение:

Выразим искомую величину из формулы производительности винтового насоса:

ηV = Q/(4·e·D·T·n) = 1,6/(4·0,02·0,07·0,14·15) · 60/3600 = 0,85

Пример №5

Необходимо рассчитать напор, расход и полезную мощность центробежного насоса, перекачивающего жидкость (маловязкая) с плотностью 1020 кг/м3 из резервуара с избыточным давлением 1,2 бара а резервуар с избыточным давлением 2,5 бара по заданному трубопроводу с диаметром трубы 20 см. Общая длинна трубопровода (суммарно с эквивалентной длинной местных сопротивлений) составляет 78 метров (принять коэффициент трения равным 0,032). Разность высот резервуаров составляет 8 метров.

Решение:

Для маловязких сред выбираем оптимальную скорость движения в трубопроводе равной 2 м/с. Рассчитаем расход жидкости через заданный трубопровод:

Q = (π·d²) / 4·w = (3,14·0,2²) / 4·2 = 0,0628 м³/с

Скоростной напор в трубе:

w²/(2·g) = 2²/(2·9,81) = 0,204 м

При соответствующем скоростном напоре потери на трение м местные сопротивления составят:

HТ = (λ·l)/dэ · [w²/(2g)] = (0,032·78)/0,2 · 0,204 = 2,54 м

Общий напор составит:

H = (p2-p1)/(ρ·g) + Hг + hп = ((2,5-1,2)·105)/(1020·9,81) + 8 + 2,54 = 23,53 м

Остается определить полезную мощность:

NП = ρ·g·Q·H = 1020·9,81·0,0628·23,53 = 14786 Вт

Пример №6

Целесообразна ли перекачка воды центробежным насосом с производительностью 50 м3/час по трубопроводу 150х4,5 мм?

Решение:

Рассчитаем скорость потока воды в трубопроводе:

Q = (π·d²)/4·w

w = (4·Q)/(π·d²) = (4·50)/(3,14·0,141²) · 1/3600 = 0,89 м/с

Для воды скорость потока в нагнетательном трубопроводе составляет 1,5 – 3 м/с. Получившееся значение скорости потока не попадает в данный интервал, из чего можно сделать вывод, что применение данного центробежного насоса нецелесообразно.

Пример №7

Определить коэффициент подачи шестеренчатого насоса. Геометрические характеристики насоса: площадь поперечного сечения пространства между зубьями шестерни 720 мм2; число зубьев 10; длинна зуба шестерни 38 мм. Частота вращения составляет 280 об/мин. Реальная подача шестеренчатого насоса составляет 1,8 м3/час.

Решение:

Теоретическая производительность насоса:

Q = 2·f·z·n·b = 2·720·10·0,38·280·1/(3600·106) = 0,0004256 м³/час

Коэффициент подачи соответственно равен:

ηV = 0,0004256/1,8·3600 = 0,85

Пример №8

Насос, имеющий КПД 0,78, перекачивает жидкость плотностью 1030 кг/м3 с расходом 132 м3/час. Создаваемый в трубопроводе напор равен 17,2 м. Насос приводится в действие электродвигателем с мощностью 9,5 кВт и КПД 0,95. Необходимо определить, удовлетворяет ли данный насос требованиям по пусковому моменту.

Решение:

Рассчитаем полезную мощность, идущую непосредственно на перекачивание среды:

NП = ρ·g·Q·H = 1030·9,81·132/3600·17,2 = 6372 Вт

Учтем коэффициенты полезного действия насоса и электродвигателя и определим полную необходимую мощность электродвигателя:

NД = NП/(ηН·ηД) = 6372/(0,78·0,95) = 8599 Вт

Поскольку нам известна установочная мощность двигателя, определим коэффициент запаса мощности электродвигателя:

β = NУ/NД = 9500/8599 = 1,105

Для двигателей с мощностью от 5 до 50 кВт рекомендуется выдирать пусковой запас мощности от 1,2 до 1,15. Полученное нами значение не попадает в данный интервал, из чего можно сделать вывод, что при эксплуатации данного насоса при заданных условиях могут возникнуть проблемы в момент его пуска.

Пример №9

Центробежный насос перекачивает жидкость плотностью 1130 кг/м3 из открытого резервуара в реактор с рабочим давлением 1,5 бар с расходом 5,6 м3/час. Геометрическая разница высот составляет 12 м, причем реактор расположен ниже резервуара. Потери напора на трение в трубах и местные сопротивления составляет 32,6 м. Требуется определить полезную мощность насоса.

Решение:

Рассчитаем напор, создаваемый насосом в трубопроводе:

H = (p2-p1)/(ρ·g) + Hг + hп = ((1,5-1)·105)/(1130·9,81) – 12 + 32,6 = 25,11 м

Полезная мощность насоса может быть найдена по формуле:

NП = ρ·g·Q·H = 1130·9,81·5,6/3600·25,11 = 433 Вт

Пример №10

Определить предельное повышение расхода насоса, перекачивающего воду (плотность принять равной 1000 кг/м3) из открытого резервуара в другой открытый резервуар с расходом 24 м3/час. Геометрическая высота подъема жидкости составляет 5 м. Вода перекачивается по трубам 40х5 мм. Мощность электродвигателя составляет 1 кВт. Общий КПД установки принять равным 0,83. Общие потери напора на трение в трубах и в местных сопротивлениях составляет 9,7 м.

Решение:

Определим максимальное значение расхода, соответствующее максимально возможной полезной мощности, развиваемой насосом. Для этого предварительно определим несколько промежуточных параметров.

Рассчитаем напор, необходимый для перекачивания воды:

H = (p2-p1)/(ρ·g) + Hг + hп = ((1-1)·105)/(1000·9,81) + 5 + 9,7 = 14,7 м

Полезная мощность, развиваемая насосом:

NП = Nобщ/ηН = 1000/0,83 = 1205 Вт

Значение максимального расхода найдем из формулы:

NП = ρ·g·Q·H

Найдем искомую величину:

Qмакс = NП/(ρ·g·H) = 1205/(1000·9,81·14,7) = 0,00836 м³/с

Расход воды может быть увеличен максимально в 1,254 раза без нарушения требований эксплуатации насоса.

Qмакс/Q = 0,00836/24·3600 = 1,254

Инженеры всегда готовы проконсультировать или предоставить дополнительную техническую информацию по предлагаемым герметичным насосам.

Ваши запросы на оборудование просим присылать в технический департамент нашей компании на e-mail: info@ence.ch, тел. +7 (495) 225 57 86.

Центральный сайт компании ENCE GmbH
Наша сервисная компания Интех ГмбХ

Головные Представительства в странах СНГ:

России
Казахстане
Украине
Туркменистане
Узбекистане
Латвии
Литве

Рекомендации по установке насосов

При монтаже помп в систему отопления, учитываются критерии:

  • аппарат встраивается так, чтобы вал принимал горизонтальное положение;
  • прикрепляется при помощи разводного ключа;
  • подсоединение производится строго по схеме.

О установке насоса вам расскажет ролик:

Типовые закономерности

Приведенныедалеетиповыезако­номерностидемонстрируюттео­ретическоевлияниедиаметра (d) рабочегоколесананапор, подачу ипотребляемуюмощность.

Напор пропорционален диаметру во второй степени:

Согласно этой закономерности, удво­ение диаметра повысит напор в 4 раза.Подача пропорциональна диаметру в третьей степени:

Согласно этой закономерности, удво­ение диаметра повысит подачу в 8 раза.Потребляемая мощность пропорцио­нальна диаметру в пятой степени:

Согласно этой закономерности, удво­ение диаметра повысит потребляе­мую мощность в 32 раза.

Рис. 19 Типовые закономерности, связанные с диаметром рабочего колеса

Коротко о главном

Насосы по своей функциональности разделяют на водяные и помпы для системы отопления. Они бывают бытовыми и промышленными. Каждая модель имеет свою мощность и КПД. Эти аспекты очень важно учитывать при выборе.

А Вы знаете, какая мощность у Вашего насоса?

Рейтинг
( 1 оценка, среднее 5 из 5 )
Загрузка ...