Принцип работы генератора переменного тока: 7 типов устройств

Устройство и принцип работы генератора переменного тока. Область применения и классификация. Описание схем: звезда и треугольник. Практическое применение конструкции.

Устройство генератора переменного тока

Итак, относительно устройства генератора переменного тока и принципа его действия.

генератор переменного тока устройство

Наибольшее распространение получили генераторы переменного тока с неподвижным проводником. Обусловлено это тем, что ток возбуждения по отношению к току, который получают с генератора, небольшой. Если посмотрите на картинку, то увидите два кольца, по которым протекает ток обмотки возбуждения и это слабое звено любого генератора с обмоткой возбуждения. То есть, либо по кольцам через щётки мы подаем небольшой ток возбуждения, либо через кольца снимаем большой рабочий ток. В электричестве неподвижная часть генераторов или двигателей, на которой находится обмотка, называется статором. Подвижная часть может называться ротором или якорем.

Основные виды генераторов переменного тока

Видов генераторов довольно много. Попробуем классифицировать их по основным направлениям.

  • По виду используемой энергии:
    • Энергия ветра
    • Энергия газа
    • Энергия жидкого топлива
    • Энергия тепла
    • Энергия воды
  • По типу генератора:
    • Однофазный
    • Трёхфазный
    • Синхронный
    • Асинхронный
    • По количеству полюсов статорной обмотки

Есть и другие типы, но они менее распространены.

  • По типу возбуждения:
    • Независимое возбуждение. В этом случае на одном валу с генератором переменного тока находится еще и генератор постоянного тока, который питает только обмотку возбуждения. Возбуждение в таком случае может выполняться и любым другим источником тока, например, аккумулятором.
    • Самовозбуждение. В этом случае, напряжение для обмотки возбуждения получают непосредственно с используемого генератора.
    • Возбуждение с помощью магнитов, которые располагаются на статоре или на якоре, что значительно упрощает устройство генератора, но с помощью такого способа получить мощные генераторы не получится.

Синхронный генератор : схема, устройство, принцип работы

Что значит синхронный по отношению к двигателю или генератору? Если совсем просто, то частота переменного тока жёстко зависит от скорости вращения ротора электрической машины и наоборот. Таким образом, можно относительно легко контролировать частоту переменного тока. Сам по себе синхронный генератор имеет ряд преимуществ, благодаря которым стал наиболее распространенным. Скажу вам по большому секрету, именно синхронные генераторы используются на всех станциях, где производят электричество.

синхронный генератор

Приводным двигателем (на схеме обозначен как ПД) может выступать любое вращающее устройство: двигатель, турбина, крыльчатка ветряной мельницы или водяного колеса. На одном валу с ПД находится ротор генератора с обмоткой возбуждения. На обмотку подается постоянное напряжение и вокруг обмотки образуется магнитное поле. Когда ротор вращается, в обмотках статора возникает ЭДС, то есть появляется напряжение, только уже переменное, частота которого зависит от скорости вращения ротора n1 и количества пар полюсов p. Частоту ЭДС можно высчитать по формуле.

формула

Асинхронный генератор: схема, устройство, принцип работы

асинхронный генератор устройство

Устройство асинхронного генератора

Асинхронный генератор, это, по сути, асинхронный двигатель. То есть, любой асинхронный двигатель можно перевести в режим генерации энергии и наоборот. Конструктивно, устройство, которое называют генератором, выполнено таким образом, чтобы иметь хорошее охлаждение. Глубоко останавливаться на принципе действия асинхронных машин не будем, но вкратце расскажу, почему их называют асинхронными на примере двигателя.

асинхронный двигатель

Когда на обмотки статора подается напряжение, образуется магнитное поле, у трёхфазных двигателей оно круговое, у однофазных эллипсообразное, стремящееся к круговому. Магнитное поле начинает пересекать витки обмотки статора. В короткозамкнутой обмотке ротора возникает ЭДС, то есть напряжение, а поскольку обмотка короткозамкнутая, по ней начинает протекать ток, который тоже создает магнитное поле. Взаимодействие этих магнитных полей приводит ротор в движение. Что будет, если скорость ротора станет равна скорости магнитного поля, создаваемого статором? Правильно, магнитное поле статора перестанет пересекать обмотку ротора. Это можно сравнить с тем, что две машины двигаются на одинаковой скорости. Вроде бы машины двигаются, но при этом по отношению друг к другу они словно стоят на месте, просто земля с большой скоростью проносится под машинами. Так вот, как только скорость ротора и скорость магнитного поля статора станут одинаковыми, в обмотке ротора перестанет вырабатываться ЭДС, прекратится взаимодействие магнитных полей статора и ротора и ротор начнёт останавливаться. Поэтому скорость вращения ротора асинхронного двигателя всегда несколько меньше скорости вращения магнитного поля статора и эта величина называется скольжение.

Так вот, чтобы асинхронный двигатель стал генератором, надо определить скольжение и увеличить скорость вращения ротора на эту величину. Допустим, мы имеем однополюсный трехфазный асинхронный двигатель со скоростью вращения вала 2800 оборотов. Если бы такой двигатель был синхронным, скорость вращения составила бы 3000 оборотов. То есть скольжение составляет 200 оборотов в минуту. Это значит, что если мы начнём вращать ротор со скоростью 3200 оборотов в минуту, то двигатель перейдёт в генераторный режим и будет уже не потреблять, а вырабатывать ЭДС.

Сложность применения таких генераторов в том, что они подвержены провалам. Например, если включить активную нагрузку (лампочку накаливания или нагреватель), пусковой ток будет небольшим. Значительной перегрузки не произойдет, и генератор будет работать стабильно. Если же включить реактивную нагрузку, например, двигатель, то будет большой пусковой ток, превышающий номинальный в 5-20 раз, который «провалит» генератор, то есть вызовет резкое падение напряжения на обмотках генератора. После такого провала асинхронный генератор снова нужно возбуждать. Так что, простота асинхронного генератора перевешивается серьезным недостатком.

Ну и еще нужна конденсаторная установка для возбуждения короткозамкнутой обмотки ротора. Если подобрать неверно ёмкость конденсаторов, то в случае «недобора» от генератора мы получим меньше тока, а в случае «перебора», наш генератор будет сильно перегреваться.

Схемы подключения

Собственно, даже не схемы включения, а варианты. Их, как правило, три:

      • Автоматическое включение. В этом случае устанавливается специальный блок аварийного включения. Как только отключают напряжение в сети, блок подаёт команду на запуск генератора и переключает сеть с внешнего источника питания, на генераторную установку.
      • Ручное включение. В этом случае, пользователь сам проводит операцию переключения с внешнего источника питания на генераторную установку и вручную запускает генератор.
      • Синхронная работа. Такой режим, в основном используется на крупных станциях, генераторы которых объединены в одну сеть. Все генераторы этой сети работают синхронно, с одной частотой, с одной очерёдностью фаз и с одинаковым напряжением на обмотках статора.

Однофазный генератор

Здесь я подробно останавливаться не буду. Такие устройства сейчас можно встретить в любом магазине инструментов. Если однофазный генератор используется как запасной источник электроэнергии, то подключается к домовой сети, как правило, посредством рубильника. То есть, одновременно внешний источник питания и генератор на одну сеть не могут – либо то, либо другое. Во-первых, незачем, во-вторых, это сильно усложнило бы и увеличило стоимость бытовых генераторов. Единственное, на чём могу здесь остановиться, это включение однофазного генератора в трёхфазную сеть.

Включение однофазного генератора

Включение однофазного генератора в трёхфазную сеть

Однако у такого метода есть свой недостаток. Трёхфазные двигатели в такой сети работать не будут, если же их включить, то очень быстро нагреются и выйдут из строя.

Трехфазный генератор

Трёхфазные генераторы могут быть бытовыми и промышленными. Устройство генератора трёхфазного тока в бытовом варианте практически ничем не отличается от однофазного, как и схема включения. Единственное условие при включении бытового генератора в сеть, если в такой сети имеются трёхфазные двигатели – соблюдать очередность фаз. В случае же, если нагрузка в доме однофазная, то такой предосторожностью можно пренебречь.

Устройство генератора трёхфазного тока в промышленном варианте – это устройство, оснащенное автоматическим пуском и иногда может быть оснащено устройством синхронизации. Подключение таких генераторов лучше доверить специалистам.

Ну а бытовой генератор точно так же, как и однофазный включается в сеть через рубильник. Следовательно, в зависимости от положения рубильника работает либо внешний источник питания, либо генератор.

История

Электрические машины, генерирующие переменный ток, были известны в простом виде со времён открытия магнитной индукции электрического тока. Ранние машины были разработаны Майклом Фарадеем и Ипполитом Пикси.

Фарадей разработал «вращающийся прямоугольник», действие которого было многополярным — каждый активный проводник пропускался последовательно через область, где магнитное поле было в противоположных направлениях. Первая публичная демонстрация наиболее сильной «альтернаторной системы» имела место в 1886 году. Большой двухфазный генератор переменного тока был построен британским электриком Джеймсом Гордоном<span title=”Статья «Гордон, Джеймс Эдвард Генри» в русском разделе отсутствует”>ru</span>en (англ. James Edward Henry Gordon) в 1882 году. Лорд Кельвин и Себастьян Ферранти<span title=”Статья «Ферранти, Себастьян Пьетро Инноченцо Адемар Зиани де» в русском разделе отсутствует”>ru</span>en (англ. Sebastian Pietro Innocenzo Adhemar Ziani de Ferranti) также разработали ранний альтернатор, производивший переменный ток частотой между 100 и 300 герц. В 1891 году Никола Тесла запатентовал практический «высокочастотный» альтернатор (который действовал на частоте около 15000 герц). После 1891 года были изобретены многофазные альтернаторы. Генератор трехфазного тока с трехпроводной нагрузкой разработал и продемонстрировал русский инженер Доливо-Добровольский, работавший главным инженером берлинской компании AEG. В 1893 году продемонстрированное им изобретение было использовано А. Н. Щенсновичем при строительстве первой промышленной трехфазной электростанции в составе Новороссийского зернового элеватора.[1]

Что такое генератор переменного тока, и кто его изобрел

Генератор переменного тока представляет собой специализированную электрическую установку, которая преобразует механическую энергию в электрическую. Последняя обладает переменной характеристикой. Само превращение основано на механическом вращении катушки из проволоки внутри магнитного поля.

Демонстрация рассматриваемого прибора в разрезе

К сведению! Практически все современные генераторы используют для получения электроэнергии вращающееся магнитное поле, а не катушку.

Как уже было сказано, электрический ток вырабатывается не только при механическом движении катушки в поле магнита, но и тогда, когда силовые линии магнита, находящегося во вращательном движении, пересекают витки катушки. Таким образом появляющиеся электроны начинают свое движение к положительному полюсу магнита, а сам электроток протекает от плюсового полюса к минусовому.

Ток индуцируется в проводнике (катушке). Его течение отталкивает магнит, когда рамка катушки подходит к нему, и отталкивает его, когда рамка удаляется. Его говорить проще, то ток каждый раз меняет свою ориентацию относительно полюсов магнита. Это и вызывает такое явление, как переменный электрический ток.

Демонстрация прибора с помощью простого магнита и контура

Данное приспособление появилось еще в 1832 г. благодаря стараниям Н. Тесла. Именно тогда был создал самый первый однофазный синхронный генератор переменного электрического тока. Самые первые установки производили только постоянный ток, а рассматриваемый генератор переменной характеристики некоторое время не мог найти своего практического применения. Это длилось не долго, так как люди быстро поняли, что переменный ток использовать гораздо практичнее, чем постоянный.

Обратите внимание! Преимущество новой технологии заключалось в том, что такой электроток было легче выработать, а на обслуживание приборов уходило в разы меньше времени и ресурсов, чем на аналоги, работающие на постоянном токе.

Именно благодаря переменному току и его генератору смогли появиться на свет такие электроприборы, как радиоприемник, магнитофон и другие более поздние автоматические и электротехнические установки, без которых представить жизнь современного человека нельзя.

Использование графика для демонстрации переменного и постоянного электротоков

Современный водяной двигатель

В современных водяных двигателях колесо с лопастями заменено более скоростной водяной турбиной (образовано от слова «турбо» — «вихрь»). Чаще всего она имеет спиральный кожух, по форме напоминающий раковину улитки. Вода поступает в широкий конец кожуха. Так как «коридор», по которому она течет, все время сужается, ее напор увеличивается.

Затем усиленный поток воды поступает на вогнутые лопатки турбины, которая расположена в центре «улитки», и вращает ее. Так энергия потока воды преобразуется в механическую работу.

Параметры синхронного генератора

Основными величинами, характеризующими синхронный генератор, являются:

Назначение генератора переменного тока

Переменные генераторы тока применяют уже достаточно давно. За последние годы сфера применения стала еще более обширной. Используются такие приборы не только в промышленных, но и в бытовых целях. Производственные электроустановки представляют собой самый выгодный вариант для генерации электроэнергии, используемой на заводах и предприятиях, учебных учреждениях, торговых центрах и т. д. Также такие генераторы позволяют значительно ускорить строительство того или иного сооружения в тех местах, где нет возможности провести линию электропередачи.

В быту такие устройства также применяются. Они обладают более компактными размерными характеристиками и универсальностью. Часто их используют для питания частных домов, дачных участков или коттеджей.

Обратите внимание! Бытовые и производственные генераторы перемененного тока пользуются популярностью практически во всех сфера жизни человека. Особенно они полезны там, где постоянно возникают перебои с подачей электроэнергии или ее нет вообще.

Возбуждение генератора переменного тока

Запуск

Переносной генератор необходимо разместить на ровной сухой поверхности, а в случае работы на открытом пространстве — защитить его от попадания осадков. Поскольку одноцилиндровые двигатели, применяемые в бензогенервторах, отличаются высоким уровнем вибраций, нельзя располагать на генераторе посторонние предметы, а особенно — емкости с топливом, во избежание их падения.

Перед запуском необходимо удостовериться в достаточном уровне моторного масла и при необходимости долить его, после чего двигатель генератора можно запускать.

Подключать нагрузку к генератору можно только после того, как двигатель будет запущен. Не запускайте генератор, если к нему подключены электроприборы.

Для запуска бензинового мотора служит специальная воздушная заслонка, в закрытом положении обогащающая топливную смесь. При первом запуске двигателя, особенно в холодную погоду, ее необходимо закрыть тем больше, чем ниже температура воздуха, а по мере прогрева двигателя плавно открыть

Прогретый двигатель должен запускаться без прикрытия заслонки, в противном случае стоит обратить внимание на регулировки карбюратора. Запуск в зависимости от конструкции двигателя осуществляется либо тросовым стартером (плавно вытяните его до ощущения сопротивления, после чего резко увеличьте усилие), либо электрическим (для запуска нажмите и удерживайте пусковую кнопку)

Запуск дизельного мотора отличается только тем, что нет необходимости использовать воздушную заслонку, но вместо этого нужно приоткрывать декомпрессор — устройство, снижающее давление в камере сгорания для облегчения проворота коленчатого вала при запуске. Кроме того, запуск дизельного мотора может сильно затруднить завоздушенная топливная система (первый запуск нового генератора или если до этого бак был выработан насухо). В таком случае придется прокачать топливную систему (порядок прокачки отличается для разных двигателей и описывается в руководстве по эксплуатации).

Дав поработать генератору некоторое время (в теплое время года бензиновый двигатель прогреется достаточно быстро, не более минуты), можно подключать нагрузку, убедившись, что индикаторы работоспособности или указатель напряжения генераторной установки указывают на ее полную работоспособность.

Технические параметры

Генераторы отличаются также основными величинами, которые являются техническими параметрами. Среди всего числа можно выделить наиболее значимые:

  • электрическое U;
  • вырабатываемый I;
  • мощность (далее P);
  • частота вращения (обороты в минуту);
  • коэффициент P — cos ф.

Регулируется U благодаря изменению Ф при последовательном подключении в цепь обмоток возбуждения регуляторов U (переменный резистор или электронный регулятор U). При наличии генератора-возбудителя ток непосредственно регулируется на нём. При использовании генераторов переменного U от постоянных магнитов следует применить стабилизаторы U или регуляторы.

Индукция

При подключении в цепь используют параллельное соединение ЭГ, один из которых считается резервным. Для подключения резервного ЭГ к шинам-проводникам нужно выполнять условие равенства ЭДС и U на этих шинах. Также фазовый сдвиг должен быть равен нулю. Этот процесс получил название синхронизации ЭГ. Для осуществления синхронизации генератора с сетью применяют синхроскоп, представляющий обыкновенную лампу накаливания и вольтметр (нулевой).

Синхроскоп подключается к генератору последовательно. При пуске генератора регулируется I возбуждения. Если генератор синхронизирован, то лампы гаснут, а до этого — моргают.

Чем чаще они моргают, тем быстрее процесс синхронизации и регулировка близятся к завершающей стадии. Нужно обратить внимание на вольтметр, который должен при синхронизированном ЭГ показывать значение, равное 0.

Более подробную информацию о том,

как проверить генератор

, вы сможете найти в интересном материале нашего специалиста.

Как устроен генератор переменного тока

Устройство генератора крайне простое. Он состоит из двух основных частей: подвижной (ротор или индуктор) и неподвижной (статор или якорь). В ГПТ ротором выступает электрический магнит, создающий магнитное поле, которое и принимает статор. Поверхность якоря обладает впадинами, которые называются пазами. В них виднеется обмотка катушки, выступающей в роли проводника.

Обратите внимание! Обычно якорь изготавливают их спрессованных листов стали толщиной не более 0,3 мм. Их изоляционный слой представляет собой простое лаковое покрытие.

Ротор устанавливают внутри статора. Его вращение осуществляется с помощью двигателя, мощность которого передается через обычный вал и некоторые опорные элементы. На валу также имеется возбудитель с постоянным значением электротока, питающий им обмотки катушки. Также среди компонентов имеется аккумуляторная батарея, которая инициализирует запуск стартера и может подавать электричество, если его не хватает для запуска двигателя, его работы.

Важно! Основное различие между однофазным и трехфазным генераторами электрического тока заключается в том, какое максимальное напряжение выдается прибором. В первом случае это 220 В, а во втором — и 220, и 380 В.

Устройство установки

Дизельный генератор

принцип работы генератора постоянного тока

Принцип работы дизель-генератора заключается в преобразовании энергии топлива в электроэнергию, основные действия которого заключаются в следующем:

  • при попадании в дизель топлива оно начинает сгорать, после чего трансформируется из химической в тепловую энергию;
  • благодаря наличию кривошипно-шатунного механизма тепловая сила преобразуется в механическую, это все происходит в коленчатом вале;
  • полученная энергия при помощи ротора превращается в электрическую, которая и необходима на выходе.

Основное предназначение

Генераторы широко используются для производства электроэнергии и представляют собой огромные машины, вырабатывающие ток высокой мощности. Однако не все разновидности имеют такие габариты. Устройства, применяемые в автотранспорте, используются в качестве источников U. Это очень удобно, так как ходовая часть транспорта совершает механические движения и глупо не воспользоваться этим видом энергии для вращения ЭГ.

Генераторы трёхфазного типа переменного тока применяются вместе с мостовым выпрямителем и используются для зарядки аккумулятора. Кроме того, они используются для питания электропотребителей, например, системы зажигания, световой сигнализации и освещения, бортового компьютера и так далее. Подключается устройство к регулятору U, благодаря которому величина U остается постоянной. В авто применяются устройства переменного тока, так как они имеют меньшие размеры относительно своих собратьев — ЭГ постоянного U.

Основное предназначение генератора

Основные сферы применения

В зависимости от того, где используется электрогенератор, определяются его технические характеристики. Главным образом, отношения генератора к определенной категории по области применения, определяет его мощность. Разделяют следующие разновидности оборудования по сферам эксплуатации:

  • Бытовые. Обладают мощностью от 0,7 до 25 кВт. Обычно к этой категории относятся бензиновые и дизельные генераторы. Применяются для электроснабжения бытовых электроприборов и оборудования малой мощности, очень часто на строительных площадках. Сгодятся в качестве портативного источника электроэнергии при выезде на природу;
  • Профессиональные. Могут применяться в качестве постоянного источника электроэнергии в муниципальных учреждениях и мелких производственных предприятиях. Его мощность не превышает 100 кВт;
  • Промышленные. Могут эксплуатироваться на крупных фабриках и заводах, где требуется высокомощное оборудование. Такие аппараты обладают мощностью более 100 кВт, имеют немалые габариты и сложны в техническом обслуживании для неподготовленного человека.

Список использованной литературы

  • Вольдек А. И., Попов В. В. «Электрические машины. Введение в электромеханику. Машины постоянного тока и трансформаторы» 2008
  • О.А.Косарева «Шпаргалка по общей электротехники и электроники»
  • Китаев В. Е., Корхов Ю. М., Свирин В. К. «Электрические машины» Часть 1. Машины постоянного тока. 1978
  • Данилов И.А., Лотоцкий К.В. «Электрические машины» 1972

Схема генератора переменного тока

Принципы работы генератора переменного и постоянного токов уже понятны, как и его основные конструкционные элементы. Необходимо рассмотреть пару схем для обобщения материала и понимания процесса генерации электротока.

Схема обычного устройства генерации электротока

Таким образом, были рассмотрены генератор переменного тока, устройство и принцип его действия.

Принципиальная схема электрического генерирующего устройства

Строение этого аппарата практически не поменялось с момента его создания еще в 1800-х гг. Данное электрооборудование служит для выработки тока, который применяется для бытовых или производственных целей.

Охлаждение генераторов переменного тока

Генератор с водородным охлаждением, окрашен в красный цвет

Генератор с водородным охлаждением, окрашен в красный цвет

Во время работы в генераторе возникают потери энергии, превращающиеся в теплоту и нагревающие его элементы. Хотя КПД современных генераторов очень высок, абсолютные потери достаточно велики, что приводит к значительному повышению температуры активной стали, меди и изоляции. Повышение температуры конструктивных элементов, в свою очередь, ведёт к их постепенному разрушению и уменьшению срока службы генератора[3][4]. Для предотвращения этого применяют различные системы охлаждения.

Выделяют следующие типы систем охлаждения: поверхностное (косвенное) и непосредственное охлаждение[3]. Косвенное охлаждение в свою очередь может быть воздушным и водородным.

Водородные системы охлаждения чаще устанавливаются на крупные генераторы, так как они обеспечивают лучший отвод тепла[5] (По сравнению с воздухом водород имеет большую теплопроводность и в 10 раз меньшую плотность[6]). Водород пожаро- и взрывоопасен, поэтому применяется изоляция вентиляционной системы и поддержание повышенного давления.

Литература

  • Thompson, S. P. Dynamo-Electric Machinery : A Manual for Students of Electrotechnics : Part 1 :  [англ.]. — New York : Collier and Sons, 1902.

Крепление и привод

За работу генератора отвечает шкив двигателя посредством работы ременной передачи. Количество оборотов агрегата зависит от диаметров различных шкивов, входящих в состав конструкции основного устройства.

В современных моделях транспортных средств встречается поликлиновый ремень, обладающий большой гибкостью. С его помощью удается привести в действие шкивы минимального диаметра, благодаря чему увеличиваются обороты автогенератора. Существует несколько способов натяжения такого ремня, что очень удобно. Выбор способа зависит от модели транспортного средства, а также от конструкции натяжителя. Обычно предпочитают натягивать ремень специальными шариковыми роликами.

Ссылки

  • Alternators. Integrated Publishing (TPub. com).
  • Wooden Low-RPM Alternator. ForceField, Fort Collins, Colorado, USA.
  • Understanding 3 phase alternators. WindStuffNow.
  • Alternator, Arc and Spark. The first Wireless Transmitters. The G0UTY Homepage.
  • White, Thomas H., Alternator-Transmitter Development (1891—1920). EarlyRadioHistory.us.
modif.png

Эта страница в последний раз была отредактирована 2 мая 2021 в 12:28.

Рейтинг
( 1 оценка, среднее 5 из 5 )
Загрузка ...